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The case of one-sided heat transfer to a fiat p la te  immersed in a flow of heated liquid is examined.  Equa- 
tions are obtained for the liquid temperature  distribution in the boundary layer,  and for the heat flux from 
the liquid to the wall.  

We shall  examine  heat  transfer to a flat horizontal  plate  of finite thickness (Fig. 1), one surface of which is i m -  
mersed in a laminar  flow of a heated liquid. The opposite surface of the pla te  has constant temperature  T 1 along its 
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Fig. 1. Boundary layer  on fiat plate ,  

length, T I being less than the undisturbed temperature  of the flow, Too. It is c lear  that the heat  flux will  depend both 
on the difference T m - T t, and on the thermal  resistance of the plate.  As the la t ter  increases, the heat  flux will  tend 

to zero, and vice  versa. At the same t ime,  the temperature  of the p la te  surface immersed in the liquid flow will  tend 
to that of the free stream, and therefore the temperature  distribution over the thermal  boundary layer will  also vary. 

We must therefore evaluate  the influence of the thermal  resistance of the plate ,  both on the heat  flux and on the 
liquid temperature  distribution in the boundary layer.  

If we assume that  the physical  properties of the liquid are independent of temperature ,  and also neglect  the heat  

due to friction of the liquid on the plate ,  the equation for the temperature  distribution in the boundary layer will  have 

the form 

d2v~__ Pr __d# = 0 ,  
d ~q2 q- -2 - f  d'q 

( i )  

where 

- -  (T  - -  T1) / (T~  - -  T O, "q = g ] / ~ / ' ~  x ,  

and ~(~) is a function describing the veloci ty  distribution in the boundary layer  [I, 2]. 

The boundary conditions which the dimensionless temperature,  9, must satisfy are 

I 

when ~q=0 ~ ( 0 ) - - k  x R e ] ( d t ~ / d r ~ ) w = o : O ,  

when 77 : oo 

where 

0 (o0) = 1, 

k x = kgp/)~pX; Re x =: U~x/w 

Equation (2) expresses the condit ion of equal i ty  of the heat  fluxes 

( 2 )  

(B) 

v=o ~p 
(4) 
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Solving (1) with boundary conditions (2) and (3), we find the equation for the liquid temperature distribution in the 
boundary layer 

(1 - -  0.332 ~ P'-r k, Re~/') X 

X (T - -  T=) / (T ,  - -  T| = 

O~ O~ 

: .,I' [[" (~)]Pr d~/. i [["(~)]prd~" 
~r, 0 

In determining the constants of integration, we introduced the 
relations [1] 

(5) 

oo 

/'" (0) -- 0.332 and ( 0 . 3 3 2 ) P r / ,  i [[" (vi)]Prd'q == 0.332 V ~ r r .  
0 

The relation on the right side of (8) is the temperature distrib- 
ution found by Pohlhausen for the case of  a cooled plate [1]. 

The heat flux through the plate is 

q [(T| - -  T I )  ~,/x] - 1  = 

3 / - - -  t/ V - -  ~ " = 0.332 1 / P r  Rex ' / (  1 z- 0.332 Pr k x Rex '). (6) 
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Fig. 2. Variation of temperature gradient 
at the plate surface as a function of the fac- 

k I~,~I/2. tor ,.x,.~x . l - P r  = i00; 2 - i 0 ;  3 - i :  4 - 0 .  i. 

It is clear from the results obtained that, if the thermal resistance of the plate increases, a flattening occurs in the 
temperature distribution profile over the boundary layer; in this case, T w ~ T,o �9 At the same time, as the Re number 
and the distance from the plate leading edge increase, the temperature profile also becomes flattened. This is because 
as x increases, the heat transfer process tends to equilibrium. 

Furthermore, it is not hard to show that as k x ~ 0, T w --~ T 1. For this special case, Eq. (8) is identical to the 
equation found by Pohlhausen. 

Figure 2 shows the variation of temperature gradient at the wall as a function of the factor k x Re~/2 for various Pr 
numbers. 

It is clear that, with increase of k R ~t/z the influence of the Pr number on the. /temperature gradient at the wall 
X ~X ' 

decreases. For constant thermal resistance and free stream velocity, increase of kxRex/2 corresponds to reduced x. It 
follows from this that at the beginning of the plate, where the boundary layer thickness is near zero, the influence of Pr 
on the temperature gradient may be neglected. 

Our results are correct under conditions where the surface temperature T w varies weakly downstream. Moreover, 
it follows from (2) that the difference T w - T,o then retains its sign for all values of  x. 

Finally, it should be pointed out that the problem of formulating coupled systems, albeit in more general form, 
was first examined, as far as we know, in [3, 4], 

NOTATION 

X- thermal conductivity of liquid; k p -  thermal conductivity of plate; 8 p -  plate thickness; v-viscosi ty;  U 0o- vel- 
ocity of undisturbed flow. 
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